Evolutionary branching under slow directional evolution.

نویسندگان

  • Hiroshi C Ito
  • Ulf Dieckmann
چکیده

Evolutionary branching is the process by which ecological interactions induce evolutionary diversification. In asexual populations with sufficiently rare mutations, evolutionary branching occurs through trait-substitution sequences caused by the sequential invasion of successful mutants. A necessary and sufficient condition for evolutionary branching of univariate traits is the existence of a convergence stable trait value at which selection is locally disruptive. Real populations, however, undergo simultaneous evolution in multiple traits. Here we extend conditions for evolutionary branching to bivariate trait spaces in which the response to disruptive selection on one trait can be suppressed by directional selection on another trait. To obtain analytical results, we study trait-substitution sequences formed by invasions that possess maximum likelihood. By deriving a sufficient condition for evolutionary branching of bivariate traits along such maximum-likelihood-invasion paths (MLIPs), we demonstrate the existence of a threshold ratio specifying how much disruptive selection in one trait direction is needed to overcome the obstruction of evolutionary branching caused by directional selection in the other trait direction. Generalizing this finding, we show that evolutionary branching of bivariate traits can occur along evolutionary-branching lines on which residual directional selection is sufficiently weak. We then present numerical analyses showing that our generalized condition for evolutionary branching is a good indicator of branching likelihood even when trait-substitution sequences do not follow MLIPs and when mutations are not rare. Finally, we extend the derived conditions for evolutionary branching to multivariate trait spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary Branching and Sympatric Speciation Caused by Different Types of Ecological Interactions.

Evolutionary branching occurs when frequency-dependent selection splits a phenotypically monomorphic population into two distinct phenotypic clusters. A prerequisite for evolutionary branching is that directional selection drives the population toward a fitness minimum in phenotype space. This article demonstrates that selection regimes leading to evolutionary branching readily arise from a wid...

متن کامل

Determining Selection across Heterogeneous Landscapes: A Perturbation-Based Method and Its Application to Modeling Evolution in Space.

Spatial structure can decisively influence the way evolutionary processes unfold. To date, several methods have been used to study evolution in spatial systems, including population genetics, quantitative genetics, moment-closure approximations, and individual-based models. Here we extend the study of spatial evolutionary dynamics to eco-evolutionary models based on reaction-diffusion equations...

متن کامل

Trends in the sand: Directional evolution in the shell shape of recessing scallops (Bivalvia: Pectinidae).

Directional evolution is one of the most compelling evolutionary patterns observed in macroevolution. Yet, despite its importance, detecting such trends in multivariate data remains a challenge. In this study, we evaluate multivariate evolution of shell shape in 93 bivalved scallop species, combining geometric morphometrics and phylogenetic comparative methods. Phylomorphospace visualization de...

متن کامل

Speciation in multidimensional evolutionary space.

Adaptive dynamics in two-dimensional phenotype space is investigated by computer simulation. The model assumes Lotka-Voltera-type competition and a stochastic mutation process. The carrying capacity has a single maximum in the origin of the strategy space and the competition coefficient decreases with strategy difference. Evolutionary branching, an asexual analog of adaptive speciation, is obse...

متن کامل

Evolutionary-branching lines and areas in bivariate trait spaces

Aims: Evolutionary branching is a process of evolutionary diversification induced by frequency-dependent ecological interaction. Here we show how to predict the occurrence of evolutionary branching in bivariate traits when populations are evolving directionally. Methods: Following adaptive dynamics theory, we assume low mutation rates and small mutational step sizes. On this basis, we generaliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 360  شماره 

صفحات  -

تاریخ انتشار 2014